Том 24, № 128

© Platonov S.S., 2019 DOI 10.20310/2686-9667-2019-24-128-450-456 УДК 517.986.62

Spectral synthesis on zero-dimensional locally compact Abelian groups

Sergey S. PLATONOV

Petrozavodsk State University 33 Lenin Ave., Petrozavodsk 185910, Russian Federation

Спектральный синтез на нульмерных локально компактных абелевых группах

Сергей Сергеевич ПЛАТОНОВ

ФГБОУ ВО «Петрозаводский государственный университет» 185910, Российская Федерация, г. Петрозаводск, просп. Ленина, 33

Abstract. Let G be a zero-dimensional locally compact Abelian group whose elements are compact, C(G) the space of continuous complex-valued functions on the group G. A closed linear subspace $\mathcal{H} \subseteq C(G)$ is called invariant subspace, if it is invariant with respect to translations $\tau_y : f(x) \mapsto f(x+y), y \in G$. We prove that any invariant subspace \mathcal{H} admits spectral synthesis, which means that \mathcal{H} coincides with the closure of the linear span of all characters of the group G contained in \mathcal{H} .

Keywords: zero–dimensional groups; characters; harmonic analysis; spectral synthesis; invariant subspaces

For citation: Platonov S.S. Spektral'nyj sintez na nul'mernyh lokal'no kompaktnyh abelevyh gruppah [Spectral synthesis on zero-dimensional locally compact Abelian groups]. *Vestnik rossiyskikh universitetov. Matematika – Russian Universities Reports. Mathematics*, 2019, vol. 24, no. 128, pp. 450–456. DOI 10.20310/2686-9667-2019-24-128-450-456.

Аннотация. Пусть G — нульмерная локально компактная абелева группа, все элементы которой компактны, C(G) — пространство всех непрерывных комплекснозначных функций на группе G. Замкнутое линейное подпространство $\mathcal{H} \subseteq C(G)$ называется инвариантным подпространством, если оно инвариантно относительно сдвигов $\tau_y : f(x) \mapsto f(x + y), y \in G$. В работе доказывается, что любое инвариантное подпространство \mathcal{H} допускает спектральный синтез, то есть \mathcal{H} совпадает с замыканием линейной оболочки всех содержащихся в \mathcal{H} характеров группы G.

Ключевые слова: нульмерные группы; характеры; гармонический анализ; спектральный синтез; инвариантные подпространства

Для цитирования: Платонов С.С. Спектральный синтез на нульмерных локально компактных абелевых группах // Вестник российских университетов. Математика. 2019. Т. 24. № 128. С. 450–456. DOI 10.20310/2686-9667-2019-24-128-450-456. (In Engl., Abstr. in Russian)

1. General definitions

Let G be a locally compact Abelian group (LCA–group), \mathcal{F} be a locally convex topological vector space that consists of complex-valued functions on the group G. This space is called a translation invariant space if it is invariant under translations (shifts)

$$\tau_y : f(x) \mapsto f(x+y), \quad f \in \mathcal{F}, \ y \in G,$$

and all operators τ_y on the space \mathcal{F} are continuous. A closed linear subspace $\mathcal{H} \subseteq \mathcal{F}$ is called an invariant subspace if $\tau_y(\mathcal{H}) \subseteq \mathcal{H}$ for any $y \in G$.

A continuous homomorphism of G into the multiplicative group $\mathbb{C}_* = \mathbb{C} \setminus \{0\}$ of nonzero complex numbers is called an *exponential functions* or *generalized character* on G. A continuous homomorphism of G into the group $\mathbb{T} := \{z \in \mathbb{C} : |z| = 1\}$ is called a character of G.

Continuous homomorphisms of G into the additive group of comlex numbers are called additive functions. A function $x \mapsto P(a_1(x), \ldots, a_m(x))$ on G is called a *polynomial* if Pis a complex polynomial in m variables and a_1, \ldots, a_m are additive functions. A product of a polynomial and an exponential function is called an *exponential monomial*, and linear combinations of of exponential monomials are called *exponential polynomials*.

Let \mathcal{F} be a translation invariant space on G and \mathcal{H} be an invariant subspace in \mathcal{F} .

D e f i n i t i o n 1.1. An invariant subspace \mathcal{H} admits spectral synthesis if \mathcal{H} coincides with the closed linear span in \mathcal{F} of all exponential monomials that belong to \mathcal{H} . We say that a translation invariant space \mathcal{F} has the spectral synthesis property if any invariant subspace $\mathcal{H} \subseteq \mathcal{F}$ admits spectral synthesis.

2. Examples of spectral synthesis

In this section we give some examples of spectral synthesis.

1. $G = (\mathbb{R}, +)$

Any exponential monomial on \mathbb{R} has the form $f(x) = P(x) e^{\lambda x}$, where $x \in \mathbb{R}$, $\lambda \in \mathbb{C}$, P(x) is a polynomial. The function spaces $C(\mathbb{R})$ of all continuous functions and $\mathcal{E}(\mathbb{R}) = C^{\infty}(\mathbb{R})$ of all infinitely differentiable functions (all classical function spaces are equipped with their usual topologies) have the spectral synthesis property. This is result of L. Schwartz [1]. Some other examples of functions spaces on \mathbb{R} with spectral synthesis property were studied in the papers of J. E. Gilbert [2] and S. S. Platonov [3].

2. $G = (\mathbb{R}^n, +), n \ge 2$

Any exponential monomial on \mathbb{R}^n has the form $f(x) = P(x) e^{\lambda x}$, where $x = (x_1, \ldots, x_n) \in \mathbb{R}^n$, $\lambda = (\lambda_1, \ldots, \lambda_n) \in \mathbb{C}^n$, $\lambda x = \lambda_1 x_1 + \cdots + \lambda_n x_n$, P(x) is a polynomial in x. In [1] L. Schwartz conjectured that the spaces $C(\mathbb{R}^n)$ and $\mathcal{E}(\mathbb{R}^n) = C^{\infty}(\mathbb{R}^n)$ have the spectral synthesis property. This conjecture turned out to be false. In 1975, D. I. Gurevich [4] costructed an example of an invariant subspace $\mathcal{H} \subset \mathcal{E}(\mathbb{R}^2)$ containing no exponential monomials. Nevertheless, L. Schwartz [5] proved that the space $\mathcal{S}'(\mathbb{R}^n)$ of all tempered distributions on \mathbb{R}^n has the spectral synthesis property.

3. *G* is a discrete group

For the case when G is a discrete group, the most natural function space is the space C(G) consisting of all complex-valued functions on G with the topology of pointwise

convergence. The case $G = \mathbb{Z}^n$ was studied by M. Lefranc [6]. He proved that the space $C(\mathbb{Z}^n)$ has the spectral synthesis property. Some results about the spectral synthesis on the discrete groups were considered in [7]. In particular, the space C(G) has the spectral synthesis property if G is a finitely generated Abelian group [8] or a torsion Abelian group [9]. In [10] M. Laczkovich and L. Székelyhidi proved that the spectral synthesis in the space C(G) holds on a discrete Abelian group G if and only if the torsion free rank of G is finite. For the case when G is a finitely generated discrete Abelian group and \mathcal{F} is the space of all exponential growth functions on G the spectral synthesis property was proved in [11].

3. Main results

Let G be a LCA-group. An element $x \in G$ is called a compact element if the smallest closed subgroup of G, which contains x, is compact.

Let G be a LCA-group, such that all elements of G are compact. Any generalized character of G is a usual character and any additive function on G is zero. Any exponential monomial on G has the form $\lambda \chi(x)$, where $\lambda \in \mathbb{C}$, $\chi(x)$ is a character of G.

Proposition 3.1. Let \mathcal{F} be a translation invariant space on G, \mathcal{H} be an invariant subspace in \mathcal{F} . If G is a LCA-group, such that all elements of G are compact, then \mathcal{H} admits spectral synthesis if and only if \mathcal{H} coicides with the closed linear span in \mathcal{F} of all characters of G that belong to \mathcal{H} .

For any LCA-group G let \widehat{G} be the set of all characters of G. The set \widehat{G} is a LCA-group (dual group of G) with compact-open topology and multiplication being defined as the pointwise multiplication of functions.

For any invariant subspace $\mathcal{H} \subseteq \mathcal{F}$, the set $\sigma(\mathcal{H}) := \{\chi \in \widehat{G} : \chi \in \mathcal{H}\}$. is called the *spectrum* of \mathcal{H} .

If G is a LCA-group, such that all elements of G are compact, and invariant subspace \mathcal{H} admits spectral synthesis, then \mathcal{H} can be recovered uniquely by its spectrum $\sigma(\mathcal{H})$.

A locally compact topological space X is called zero-dimensional if compact open subsets of X form a basis of topology. A locally compact Hausdorff topological space X is zerodimensional if and only if X is totally disconnected, that is any subset of X, which contains more then one point, is disconnected.

Theorem 3.1. Let G be a locally compact zero-dimensional Abelian group, such that all elements of G are compact. Then: 1) the space C(G) of all continuous functions on G has the spectral synthesis property; 2) a subset $\sigma \subseteq \widehat{G}$ is the spectrum of some invariant subspace of C(G) if and only if σ is closed subset of \widehat{G} .

4. Some examples of zero-dimensional LCA-groups, all elements of which are compact

1. Let $\{n_k\}_{k\in\mathbb{Z}}$ be a two-side sequence, $n_k \in \mathbb{N}$, $n_k \ge 2$. Let

$$\widetilde{G} = \bigoplus_{k \in \mathbb{Z}} \mathbb{Z}_{n_k},$$

where \mathbb{Z}_n is the cyclic group of order n. Every \mathbb{Z}_{n_k} is a discrete group and \widetilde{G} is a compact group. Any element of \widetilde{G} has the form

$$x = \{x_k\}_{k \in \mathbb{Z}}, \qquad x_k \in \mathbb{Z}_{n_k}.$$

Let G be a subgroup of \widetilde{G} that consist of all elements

$$x = \{x_k\} \in \widetilde{G} : \exists N(x) \in \mathbb{Z} \quad \forall k < N(x) \quad x_k = 0.$$

The group G is locally compact, zero-dimensional and all elements of G are compact.

If $n_k = 2 \quad \forall k \in \mathbb{Z}$, then we have the locally compact Cantor dyadic group. The harmonic analysis on this group closely connected with Fourier–Walch harmonic analysis (see [12]).

2. Let \mathbb{Q}_p be the group of *p*-adic numbers. Any element $x \in \mathbb{Q}_p$ can be identified with a formal series

$$x = \sum_{k \ge N(x)} x_k p^k, \quad x_k \in \{0, 1, \dots, p-1\}, \quad N(x) \in \mathbb{Z}.$$

The group \mathbb{Q}_p is locally compact, zero-dimensional and all elements of G are compact.

Also, for any two-side sequence $\mathbf{a} = (a_k)_{k \in \mathbb{Z}}$, $a_k \in \mathbb{N}$, $a_k \ge 2$, there exist the group $\mathbb{Q}_{\mathbf{a}}$ of generalized \mathbf{a} -adic numbers (see [13]). The group $\mathbb{Q}_{\mathbf{a}}$ is locally compact, zero-dimensional and all elements of G are compact. A zero-dimensional LCA-group G with countable base of topology, such that all elements of G are compact, is called a Vilenkin group. Harmonic analysis on such groups was studied in [14].

5. On the ideal structure of algebras of locally constant functions

Let X be a zero-dimensional Hausdorff locally compact topological space. Let $\tau_{co}(X)$ be the set of all compact open subsets of X. The set $\tau_{co}(X)$ forms a basis of topology of X. Any finite set $\alpha = \{U_1, \ldots, U_n\}$ of mutually disjoint subsets $U_i \in \tau_{co}(X)$ is called a discrete system of subsets of X. Let $\mathfrak{M}(X)$ be the set of all discrete systems of subsets of X. For $\alpha = \{U_1, \ldots, U_n\} \in \mathfrak{M}(X)$, the support of α is the set

$$\operatorname{supp} \alpha := \bigcup_{i=1}^{n} U_i.$$

A function f on X is called locally constant if for any $x \in X$ there exist neighbourhood U = U(x) of x on which f is constant. Denote by $\mathcal{D}(X)$ the set of all locally constant complex-valued functions on X with compact support. The set $\mathcal{D}(X)$ is a linear space. Now we define a topology on $\mathcal{D}(X)$.

For any $\alpha \in \{U_1, \ldots, U_n\} \in \mathfrak{M}(X)$ let $\mathcal{D}_{\alpha}(X)$ be the set of functions of the form $f = \sum_{i=1}^{n} c_i I_{U_i}$, where $c_i \in \mathbb{C}$, I_U is the characteristic function of U. The set $\mathcal{D}_{\alpha}(X)$ is n-dimensional vector space. With respect to the uniform norm

$$||f||_{\infty} := \sup_{x \in X} |f(x)|$$

the set $\mathcal{D}_{\alpha}(X)$ is a Banach space. We equip the space

$$\mathcal{D}(X) = \bigcup_{\alpha \in \mathfrak{M}(X)} \mathcal{D}_{\alpha}(X)$$

with the topology of inductive limits of the Banach spaces $\mathcal{D}_{\alpha}(X)$, that is a topology of $\mathcal{D}(X)$ is the weakest locally convex topology for which all inclusions $\mathcal{D}_{\alpha}(X) \subseteq \mathcal{D}(X)$ are continuous. Then $\mathcal{D}(X)$ is locally convex space. With respect to the pointwise multiplication of functions, $\mathcal{D}(X)$ is a topological algebra.

Let \mathcal{I} be an ideal of the algebra $\mathcal{D}(X)$. Denote by $N(\mathcal{I})$ the set of zeros of all functions from \mathcal{I} , that is

$$N(\mathcal{I}) := \{ x \in X : f(x) = 0 \quad \forall x \in \mathcal{I} \}$$

The set $N(\mathcal{I})$ is called zero set of \mathcal{I} .

For any closed subset $A \subseteq X$ denote by \mathcal{I}_A the set of all functions $f \in \mathcal{D}(X)$, such that f(x) = 0 for any $x \in A$. The set \mathcal{I}_A is a closed ideal of $\mathcal{D}(X)$.

Theorem 5.1. Let \mathcal{I} be an ideal of the algebra $\mathcal{D}(X)$ then $\mathcal{I}_{N(\mathcal{I})} = \mathcal{I}$.

Corollary 5.1. Any ideal of the topological algebra $\mathcal{D}(X)$ is closed.

6. The proof of Theorem 3.1

Let G be a zero-dimensional LCA-group, C(G) be the set of all continuous functions on G, $\mathcal{D}(G)$ be the set of locally constant functions with compact support on G. By $\mathcal{M}_c(G)$ we denote the set of complex-valued Radon measures with compact support on G. The space $\mathcal{M}_c(G)$ can be identified with the dual space of C(G) with respect to the duality

$$\langle \mu, f \rangle := \int_{G} f(x) d\mu(x), \quad f \in C(G), \quad \mu \in \mathcal{M}_{c}(G)$$

The space $\mathcal{M}_c(G)$ is a locally convex space with respect to the weak topology $\sigma(\mathcal{M}_c(G), C(G))$.

Let $\mu_1, \mu_2 \in \mathcal{M}_c(G)$. A convolution $\mu_1 * \mu_2$ is defined by formula

$$\langle \mu_1 * \mu_2, \varphi \rangle := \int_G \int_G \varphi(x+y) \, d\mu_1(x) \, d\mu_2(y),$$

where $\varphi \in C(G)$.

The set $\mathcal{M}_c(G)$ is a commutative topological algebra with convolution as multiplication. For any closed linear subspace $\mathcal{H} \subseteq C(G)$, let \mathcal{H}^{\perp} be its annihilator in $\mathcal{M}_c(G)$ that is

$$\mathcal{H}^{\perp} := \{ \mu \in \mathcal{M}_c(G) : \langle \mu, f \rangle = 0 \quad \forall f \in \mathcal{H} \}.$$

The mapping $\mathcal{H} \mapsto \mathcal{H}^{\perp}$ is one-to-one correspondence between the set of all invariant subspaces of C(G) and the set of all closed ideals of topological algebra $\mathcal{M}_c(G)$.

Let $\mathcal{D}(G)$ be the set of all locally constant complex-valued functions on G with compact support. The set $\mathcal{D}(G)$ is a commutative topological algebra with convolution as multiplication:

$$(f_1 * f_2)(x) = \int_G f_1(x - y) f_2(y) dy. \quad f_1, f_2 \in \mathcal{D}(G).$$

We will denote this topological algebra by $\mathcal{D}_{conv}(G)$.

For any topological algebra \mathcal{A} we will denote by $s(\mathcal{A})$ the set of all closed ideals of \mathcal{A} . In particular we have the sets $s(\mathcal{M}_c(G))$ and $s(\mathcal{D}_{conv}(G))$. Using identification a function $f \in \mathcal{D}(G)$ with the measure f(x) dx, we have inclusion $\mathcal{D}(G) \subseteq \mathcal{M}_c(G)$. The maps

$$\rho : s(\mathcal{M}_c(G)) \mapsto s(\mathcal{D}_{conv}(G)) \text{ and } \tilde{\rho} : s(\mathcal{D}_{conv}(G)) \mapsto s(\mathcal{M}_c(G))$$

are defined by formulas:

$$\rho(\mathcal{H}) := \mathcal{H} \cap \mathcal{D}(G), \quad \mathcal{H} \in s(\mathcal{M}_c(G)), \quad \tilde{\rho}(\mathcal{H}_0) := [\mathcal{H}_0], \qquad \mathcal{H}_0 \in s(\mathcal{D}_{conv}(G)),$$

where $[\mathcal{H}_0]$ is the closure of \mathcal{H}_0 in the space $\mathcal{M}_c(G)$.

Proposition 6.1. The mapping ρ is a biection of set $s(\mathcal{M}_c(G))$ onto the set $s(\mathcal{D}_{conv}(G))$. The inverse mapping ρ^{-1} coincide with $\tilde{\rho}$.

Let G be a LCA-group and \widehat{G} be the dual group. It can be proved that LCA-group G is zero-dimensional group, all elements of which are compact, if and only if the dual group \widehat{G} is zero-dimensional group, all elements of which are compact.

The Fourier transform of a function $f \in L_1(G)$ is the function \widehat{f} on the dual group \widehat{G} which is defined by formula

$$\widehat{f}(\chi) := \int_{G} f(x) \overline{\chi(x)} \, dx, \quad \chi \in \widehat{G}.$$

In particular, the Fourier transform is defined for any function $f \in \mathcal{D}(G)$. The mapping $\Phi: f \mapsto \hat{f}$ is also called the Fourier transform.

Proposition 6.2. If G is a is zero-dimensional group, all elements of which are compact, then the Fourier transform Φ is an isomorphism of the topological vector space $\mathcal{D}(G)$ into the topological vector space $\mathcal{D}(\widehat{G})$.

Corollary 6.1. The mapping Φ is an isomorphism of topological algebra $\mathcal{D}_{conv}(G)$ into the topological algebra $\mathcal{D}_{mult}(\widehat{G})$.

Proof of **Theorem 3.1** Let \mathcal{H} be an invariant subspace of C(G), \mathcal{H}^{\perp} be its annihilator in $\mathcal{M}_c(G)$, $\mathcal{I} = \mathcal{H}^{\perp} \cap \mathcal{D}(G)$, $\widehat{\mathcal{I}} = \Phi(\mathcal{I})$. Then \mathcal{I} is a closed ideal of $\mathcal{D}_{conv}(G)$, and $\widehat{\mathcal{I}}$ is a closed ideal of $\mathcal{D}_{mult}(\widehat{G})$. We will say that the ideal $\widehat{\mathcal{I}}$ corresponds to the invariant subspace \mathcal{H} .

Let $\chi \in \widehat{G}$. One can prove that $\chi \in \mathcal{H}$ if and only if the point χ belongs to zero set of the ideal $\widehat{\mathcal{I}}$. Thus the spectrum $\sigma(\mathcal{H})$ of invariant subspace \mathcal{H} is the same as zero set $N(\widehat{\mathcal{I}})$ of corresponding ideal $\widehat{\mathcal{I}} \subseteq \mathcal{D}_{mult}(\widehat{G})$.

Let \mathcal{H} be an invariant subspace of C(G). Denote by \mathcal{H}_1 a closed linear subspace of C(G), that coincides with the closed linear span in C(G) of all characters of G that belong to \mathcal{H} . Then \mathcal{H}_1 is also an invariant subspace of C(G) and $\sigma(\mathcal{H}) = \sigma(\mathcal{H}_1)$. Let $\mathcal{I}_1 = \mathcal{H}_1^{\perp} \cap \mathcal{D}(G)$, $\widehat{\mathcal{I}}_1 = \Phi(\mathcal{I}_1)$. Since $N(\widehat{\mathcal{I}}) = N(\widehat{\mathcal{I}}_1)$ then we have $\widehat{\mathcal{I}} = \widehat{\mathcal{I}}_1$ by Theorem 5.1, and from Proposition 6.1 we have $\mathcal{H} = \mathcal{H}_1$. This completes the proof of Theorem 3.1.

References

- L. Schwartz, "Théorie générale des fonctions moynne-périodiques", Ann. of Math., 48 (1947), 875–929.
- [2] J.E. Gilbert, "On the ideal structure of some algebras of analytic functions", Pacif. J. of Math., 35:3 (1078), 625–639.
- [3] S.S. Platonov, "Spectral synthesis in some topological vector spaces of functions", St.-Petersburg Math. J., 22:5 (2011), 813–833.
- [4] D. I. Gurevich, "Counterexamples to a problem of L. Schwartz", Funct. Anal. Appl., 9:2 (1975), 116–120.
- [5] L. Schwartz, "Analyse et synthése harmonique dans les espaces de distributions", Can. J. Math., 3 (1951), 503–512.
- [6] M. Lefranc, "Analyse spectrale sur Z_n ", C. R. Acad. Sci. Paris, 246 (1958), 1951–1953.
- [7] L. Székelyhidi, Discrete spectral synthesis and its applications, Springer, Berlin, 2006.
- [8] L. Székelyhidi, "On discrete spectral synthesis", Advances in Mathematics, Functional Equations – Results and Advances, eds. Z. Daroćzy, Zs. Páles, Kluwer Academic Publishers, Dordrecht, 2002, 263–274.
- [9] A. Bereczky, L. Székelyhidi, "Spectral synthesis on torsion groups", J. Math. Anal. Appl., 304 (2005), 607–613.
- [10] M. Laczkovich, L. Székelyhidi, "Spectral synthesis on discrete Abelian groups", Math. Proc. Cambr. Phil. Soc., 143 (2007), 103–120.
- [11] С. С. Платонов, "Спектральный синтез в пространстве функций экспоненциального роста на конечно порожденной абелевой группе", Алгебра и анализ, 24:4 (2012), 182–200 МаthNetRu MathSciNet Zentral Math; англ. пер.:S.S. Platonov, "Spectral synthesis in a space of exponential growth functions on finitely generated abelian groups", St. Petersburg Math. J., 24:4 (2013), 663–675 Scopus.
- [12] B. Golubov, A. Efimov, V. Skvortsov, Walsh series and transforms. Theory and applications, Kluwer Academic Publishers Group, Netherlands, 1991.
- [13] E. Hewitt, K. A. Ross, "Abstract harmonic analysis", *Structure of topological groups, integration theory, group representations.* V. I, 2nd ed., Springer-Verlag, Berlin, 1994.
- [14] И. Рубистейн, Г. Н. Агаев, Н. Я. Виленкин, А. Г. М. Джафарли, Мультипликативная система функций и гармонический анализ на нульмерных группах, Элм, Баку, 1981.
 [G. N. Agaev, N. Ya. Vilenkin, G. M. Dzhafarli, A. I. Rubinshtejn, Multiplicative systems of functions and harmonic analysis on zero-dimensional groups, Ehlm, Baku, 1981 (In Russian)].

Information about the author

Sergey S. Platonov, Doctor of Physics and Mathematics, Professor of the Mathematical Analysis Department. Petrozavodsk State University, Petrozavodsk, the Russian Federation. E-mail: platonov@petrsu.ru

Received 19 August 2019 Reviewed 14 October 2019 Accepted for press 29 November 2019

Информация об авторе

Платонов Сергей Сергеевич, доктор физико-математических наук, профессор кафедры математического анализа. Петрозаводский государственный университет, г. Петрозаводск, Российская Федерация. E-mail: platonov@petrsu.ru

Поступила в редакцию 19 августа 2019 г. Поступила после рецензирования 14 октября 2019 г. Принята к публикации 29 ноября 2019 г.