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Abstract. Let G be a zero-dimensional locally compact Abelian group whose elements
are compact, C(G) the space of continuous complex-valued functions on the group G . A
closed linear subspace H ⊆ C(G) is called invariant subspace, if it is invariant with respect
to translations τy : f(x) 7→ f(x + y) , y ∈ G . We prove that any invariant subspace H
admits spectral synthesis, which means that H coincides with the closure of the linear span
of all characters of the group G contained in H.
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Аннотация. Пусть G — нульмерная локально компактная абелева группа, все эле-
менты которой компактны, C(G) — пространство всех непрерывных комплекснознач-
ных функций на группе G . Замкнутое линейное подпространство H ⊆ C(G) назы-
вается инвариантным подпространством, если оно инвариантно относительно сдвигов
τy : f(x) 7→ f(x + y) , y ∈ G . В работе доказывается, что любое инвариантное под-
пространство H допускает спектральный синтез, то есть H совпадает с замыканием
линейной оболочки всех содержащихся в H характеров группы G .
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1. General definitions

Let G be a locally compact Abelian group (LCA–group), F be a locally convex topo-
logical vector space that consists of complex-valued functions on the group G . This space
is called a translation invariant space if it is invariant under translations (shifts)

τy : f(x) 7→ f(x+ y), f ∈ F , y ∈ G,

and all operators τy on the space F are continuous. A closed linear subspace H ⊆ F is
called an invariant subspace if τy(H) ⊆ H for any y ∈ G .

A continuous homomorphism of G into the multiplicative group C∗ = C \ {0} of
nonzero complex numbers is called an exponential functions or generalized character on
G . A continuous homomorphism of G into the group T := {z ∈ C : |z| = 1} is called a
character of G .

Continuous homomorphisms of G into the additive group of comlex numbers are called
additive functions. A function x 7→ P (a1(x), . . . , am(x)) on G is called a polynomial if P
is a complex polynomial in m variables and a1, . . . , am are additive functions. A product
of a polynomial and an exponential function is called an exponential monomial, and linear
combinations of of exponential monomials are called exponential polynomials.

Let F be a translation invariant space on G and H be an invariant subspace in F .

D e f i n i t i o n 1.1. An invariant subspace H admits spectral synthesis if H coincides
with the closed linear span in F of all exponential monomials that belong to H . We say
that a translation invariant space F has the spectral synthesis property if any invariant
subspace H ⊆ F admits spectral synthesis.

2. Examples of spectral synthesis

In this section we give some examples of spectral synthesis.
1. G = (R,+)

Any exponential monomial on R has the form f(x) = P (x) eλx , where x ∈ R , λ ∈ C ,
P (x) is a polynomial. The function spaces C(R) of all continuous functions and
E(R) = C∞(R) of all infinitely differentiable functions (all classical function spaces are
equipped with their usual topologies) have the spectral synthesis property. This is result
of L. Schwartz [1]. Some other examples of functions spaces on R with spectral synthesis
property were studied in the papers of J. E. Gilbert [2] and S. S. Platonov [3].

2. G = (Rn,+) , n ≥ 2

Any exponential monomial on Rn has the form f(x)=P (x) eλx , where x=(x1, . . . , xn)∈
Rn , λ = (λ1, . . . , λn) ∈ Cn, λx = λ1x1 + · · · + λnxn , P (x) is a polynomial in x . In [1]
L. Schwartz conjectured that the spaces C(Rn) and E(Rn) = C∞(Rn) have the spectral
synthesis property. This conjecture turned out to be false. In 1975, D. I. Gurevich [4]
costructed an example of an invariant subspace H ⊂ E(R2) containing no exponential
monomials. Nevertheless, L. Schwartz [5] proved that the space S ′(Rn) of all tempered
distributions on Rn has the spectral synthesis property.

3. G is a discrete group
For the case when G is a discrete group, the most natural function space is the space

C(G) consisting of all complex-valued functions on G with the topology of pointwise
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convergence. The case G = Zn was studied by M. Lefranc [6]. He proved that the space
C(Zn) has the spectral synthesis property. Some results about the spectral synthesis on
the discrete groups were considered in [7]. In particular, the space C(G) has the spectral
synthesis property if G is a finitely generated Abelian group [8] or a torsion Abelian group [9].
In [10] M. Laczkovich and L. Székelyhidi proved that the spectral synthesis in the space C(G)

holds on a discrete Abelian group G if and only if the torsion free rank of G is finite. For
the case when G is a finitely generated discrete Abelian group and F is the space of all
exponential growth functions on G the spectral synthesis property was proved in [11].

3. Main results

Let G be a LCA-group. An element x ∈ G is called a compact element if the smallest
closed subgroup of G , which contains x , is compact.

Let G be a LCA-group, such that all elements of G are compact. Any generalized
character of G is a usual character and any additive function on G is zero. Any exponential
monomial on G has the form λχ(x) , where λ ∈ C , χ(x) is a character of G .

P r o p o s i t i o n 3.1. Let F be a translation invariant space on G , H be an inva-
riant subspace in F . If G is a LCA-group, such that all elements of G are compact, then
H admits spectral synthesis if and only if H coicides with the closed linear span in F of
all characters of G that belong to H .

For any LCA-group G let Ĝ be the set of all characters of G . The set Ĝ is a LCA-
group (dual group of G ) with compact-open topology and multiplication being defined as
the pointwise multiplication of functions.

For any invariant subspace H ⊆ F , the set σ(H) := {χ ∈ Ĝ : χ ∈ H}. is called the
spectrum of H .

If G is a LCA-group, such that all elements of G are compact, and invariant subspace
H admits spectral synthesis, then H can be recovered uniquely by its spectrum σ(H) .

A locally compact topological space X is called zero-dimensional if compact open subsets
of X form a basis of topology. A locally compact Hausdorff topological space X is zero-
dimensional if and only if X is totally disconnected, that is any subset of X , which contains
more then one point, is disconnected.

Theorem 3.1. Let G be a locally compact zero-dimensional Abelian group, such that
all elements of G are compact. Then: 1) the space C(G) of all continuous functions on G

has the spectral synthesis property; 2) a subset σ ⊆ Ĝ is the spectrum of some invariant
subspace of C(G) if and only if σ is closed subset of Ĝ .

4. Some examples of zero-dimensional LCA-groups,
all elements of which are compact

1. Let {nk}k∈Z be a two-side sequence, nk ∈ N , nk > 2 . Let

G̃ =
⊕
k∈Z

Znk
,
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where Zn is the cyclic group of order n . Every Znk
is a discrete group and G̃ is a compact

group. Any element of G̃ has the form

x = {xk}k∈Z, xk ∈ Znk
.

Let G be a subgroup of G̃ that consist of all elements

x = {xk} ∈ G̃ : ∃N(x) ∈ Z ∀k < N(x) xk = 0.

The group G is locally compact, zero-dimensional and all elements of G are compact.
If nk = 2 ∀k ∈ Z , then we have the locally compact Cantor dyadic group. The harmonic

analysis on this group closely connected with Fourier–Walch harmonic analysis (see [12]).

2. Let Qp be the group of p -adic numbers. Any element x ∈ Qp can be identified with
a formal series

x =
∑

k>N(x)

xkp
k, xk ∈ {0, 1, . . . , p− 1}, N(x) ∈ Z.

The group Qp is locally compact, zero-dimensional and all elements of G are compact.
Also, for any two-side sequence a = (ak)k∈Z , ak ∈ N , ak > 2 , there exist the group Qa

of generalized a -adic numbers (see [13]). The group Qa is locally compact, zero-dimensional
and all elements of G are compact. A zero-dimensional LCA-group G with countable base
of topology, such that all elements of G are compact, is called a Vilenkin group. Harmonic
analysis on such groups was studied in [14].

5. On the ideal structure of algebras of locally constant functions

Let X be a zero-dimensional Hausdorff locally compact topological space. Let τco(X)

be the set of all compact open subsets of X . The set τco(X) forms a basis of topology of
X . Any finite set α = {U1, . . . , Un} of mutually disjoint subsets Ui ∈ τco(X) is called a
discrete system of subsets of X . Let M(X) be the set of all discrete systems of subsets of
X . For α = {U1, . . . , Un} ∈M(X) , the support of α is the set

supp α :=
n⋃
i=1

Ui.

A function f on X is called locally constant if for any x ∈ X there exist neighbourhood
U = U(x) of x on which f is constant. Denote by D(X) the set of all locally constant
complex-valued functions on X with compact support. The set D(X) is a linear space. Now
we define a topology on D(X) .

For any α ∈ {U1, . . . , Un} ∈ M(X) let Dα(X) be the set of functions of the form
f =

∑n
i=1 ci IUi

, where ci ∈ C , IU is the characteristic function of U . The set Dα(X) is
n -dimensional vector space. With respect to the uniform norm

‖f‖∞ := sup
x∈X
|f(x)|

the set Dα(X) is a Banach space. We equip the space

D(X) =
⋃

α∈M(X)

Dα(X)
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with the topology of inductive limits of the Banach spaces Dα(X) , that is a topology of
D(X) is the weakest locally convex topology for which all inclusions Dα(X) ⊆ D(X) are
continuous. Then D(X) is locally convex space. With respect to the pointwise multiplication
of functions, D(X) is a topological algebra.

Let I be an ideal of the algebra D(X) . Denote by N(I) the set of zeros of all functions
from I , that is

N(I) := {x ∈ X : f(x) = 0 ∀x ∈ I}.

The set N(I) is called zero set of I .
For any closed subset A ⊆ X denote by IA the set of all functions f ∈ D(X) , such

that f(x) = 0 for any x ∈ A . The set IA is a closed ideal of D(X) .

Theorem 5.1. Let I be an ideal of the algebra D(X) then IN(I) = I.

Corollary 5.1. Any ideal of the topological algebra D(X) is closed.

6. The proof of Theorem 3.1

Let G be a zero-dimensional LCA-group, C(G) be the set of all continuous functions on
G , D(G) be the set of locally constant functions with compact support on G . By Mc(G)

we denote the set of complex-valued Radon measures with compact support on G . The
space Mc(G) can be identified with the dual space of C(G) with respect to the duality

〈µ, f〉 :=

∫
G

f(x) dµ(x), f ∈ C(G), µ ∈Mc(G).

The space Mc(G) is a locally convex space with respect to the weak topology
σ(Mc(G), C(G)) .

Let µ1, µ2 ∈Mc(G) . A convolution µ1 ∗ µ2 is defined by formula

〈µ1 ∗ µ2, ϕ〉 :=

∫
G

∫
G

ϕ(x+ y) dµ1(x) dµ2(y),

where ϕ ∈ C(G) .
The set Mc(G) is a commutative topological algebra with convolution as multiplication.

For any closed linear subspace H ⊆ C(G) , let H⊥ be its annihilator in Mc(G) that is

H⊥ := {µ ∈Mc(G) : 〈µ, f〉 = 0 ∀f ∈ H}.

The mapping H 7→ H⊥ is one-to-one correspondence between the set of all invariant
subspaces of C(G) and the set of all closed ideals of topological algebra Mc(G) .

Let D(G) be the set of all locally constant complex-valued functions on G with compact
support. The set D(G) is a commutative topological algebra with convolution as multipli-
cation:

(f1 ∗ f2)(x) =

∫
G

f1(x− y)f2(y)dy. f1, f2 ∈ D(G).

We will denote this topological algebra by Dconv(G) .
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For any topological algebra A we will denote by s(A) the set of all closed ideals of A .
In particular we have the sets s(Mc(G)) and s(Dconv(G)) . Using identification a function
f ∈ D(G) with the measure f(x) dx , we have inclusion D(G) ⊆Mc(G) . The maps

ρ : s(Mc(G)) 7→ s(Dconv(G)) and ρ̃ : s(Dconv(G)) 7→ s(Mc(G))

are defined by formulas:

ρ(H) := H ∩D(G), H ∈ s(Mc(G)), ρ̃(H0) := [H0], H0 ∈ s(Dconv(G)),

where [H0] is the closure of H0 in the space Mc(G) .

P r o p o s i t i o n 6.1. The mapping ρ is a biection of set s(Mc(G)) onto the set
s(Dconv(G)) . The inverse mapping ρ−1 coincide with ρ̃ .

Let G be a LCA-group and Ĝ be the dual group. It can be proved that LCA-group G

is zero-dimensional group, all elements of which are compact, if and only if the dual group
Ĝ is zero-dimensional group, all elements of which are compact.

The Fourier transform of a function f ∈ L1(G) is the function f̂ on the dual group Ĝ

which is defined by formula

f̂(χ) :=

∫
G

f(x)χ(x) dx, χ ∈ Ĝ.

In particular, the Fourier transform is defined for any function f ∈ D(G) . The mapping
Φ : f 7→ f̂ is also called the Fourier transform.

P r o p o s i t i o n 6.2. If G is a is zero-dimensional group, all elements of which are
compact, then the Fourier transform Φ is an isomorphism of the topological vector space
D(G) into the topological vector space D(Ĝ) .

Corollary 6.1. The mapping Φ is an isomorphism of topological algebra Dconv(G) into
the topological algebra Dmult(Ĝ) .

P r o o f of Theorem 3.1 Let H be an invariant subspace of C(G) , H⊥ be its
annihilator in Mc(G) , I = H⊥ ∩D(G) , Î = Φ(I) . Then I is a closed ideal of Dconv(G) ,
and Î is a closed ideal of Dmult(Ĝ) . We will say that the ideal Î corresponds to the invariant
subspace H .

Let χ ∈ Ĝ . One can prove that χ ∈ H if and only if the point χ belongs to zero set
of the ideal Î . Thus the spectrum σ(H) of invariant subspace H is the same as zero set
N(Î) of corresponding ideal Î ⊆ Dmult(Ĝ) .

Let H be an invariant subspace of C(G) . Denote by H1 a closed linear subspace
of C(G) , that coincides with the closed linear span in C(G) of all characters of G that
belong to H . Then H1 is also an invariant subspace of C(G) and σ(H) = σ(H1) .
Let I1 = H⊥1 ∩ D(G) , Î1 = Φ(I1) . Since N(Î) = N(Î1) then we have Î = Î1 by
Theorem 5.1, and from Proposition 6.1 we have H = H1 . This completes the proof of
Theorem 3.1.
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[1] L. Schwartz, “Théorie générale des fonctions moynne-périodiques”, Ann. of Math., 48 (1947),

875–929.

[2] J. E. Gilbert, “On the ideal structure of some algebras of analytic functions”, Pacif. J. of
Math., 35:3 (1078), 625–639.

[3] S. S. Platonov, “Spectral synthesis in some topological vector spaces of functions”, St.-
Petersburg Math. J., 22:5 (2011), 813–833.

[4] D. I. Gurevich, “Counterexamples to a problem of L. Schwartz”, Funct. Anal. Appl., 9:2 (1975),
116–120.
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